GSoC: The ECE configuration system - summary

The Google Summer of Code is almost over, so in this blog post I'll give a overview over the targets I've met (and those I haven't).

Code repositories

All code in the first two repositories has been developed by me during the GSoC. The third link shows the work I've done to integrate a ECE backend into libuci.

What is working

As described in earlier posts, my GSoC project was a configuration storage system for OpenWrt/LEDE, trying to solve various issues of the UCI config system. The principal points of this new system are

    • ubus-based config daemon maintaining a central storage database file
    • JSON-based configuration data model
    • Validation based on simplified JSON-Schema

The Wiki at https://gitlab.com/neoraider/ece/wikis/home gives a good overview of the design and the usage of ECE and describes many features in detail. The pkg-ece package feed can be used to build and install the different components of ECE on OpenWrt/LEDE easily.

If you've worked with OpenWrt/LEDE, you probably know the UCI config system. A UCI config file looks like this:

config system
        option hostname 'lede'
        option timezone 'UTC'

This format is very simple: Each file (called "package") has a number of sections (named or unnamed) of different types (this example from the "system" package has a single unnamed section of type "system"). These section contain options with single values or lists of values.

Unnamed sections are usually accessed using indices, for example a command to set the hostname would look like this:

uci set system.@system[0].hostname='betterhostname'

With the simplicity of UCI, there come various issues and missing features; these are only a few of them:

      • The fixed data model (package/section/option) makes some kinds of configuration very awkward: In the example above, the index 0 must be given for the system section, but having a second section of this kind would not make sense. In other cases, deeper configuration trees must be flattened to be stored in UCI, making the configuration harder to understand
      • All values in UCI are strings, which often causes inconsistencies (booleans are usually stored as '0'/'1', but several other pairs like 'false'/'true' and 'off'/'on' are supported as well; different users of UCI sometimes parse numbers differently)
      • UCI doesn't have built-in validation. Frontends like LuCI usually validate the entered data, but as soon as the CLI client is used, no validation is done.
      • UCI always stored the whole configuration file and not only changes from the defaults, making the storage inefficient on overlay-based filesystem setups as they are common on OpenWrt/LEDE
      • In some situations, upgrades to default values should also affect the effective values; but only if the user didn't change the values themselves. With UCI, this is not possible, as it doesn't store the information if a value was changed by a user.
      • UCI allows comments in config files, but they are lost as soon as libuci or the CLI tool is used to modify it

The configuration given above could be represented in ECE as this JSON document:

{
  "system": {
    "hostname": "lede",
    "timezone": "UCI"
  }
}

Note that this is only the external representation of the configuration; internally, it is stored in a more efficient binary format.

JSON gives us a lot of features for free: arbitrary configuration trees with proper data types. Existing standards and standard drafts like JSON Pointer and JSON Schema can be used to reference and validate configuration (the JSON Schema specification is simplified for ECE a bit though to allow more efficient validation on embedded systems).

The command for changing the hostname would look like this in ECE:

ece set /system/hostname '"betterhostname"'

The quoting is currently necessary to make the string a valid JSON document; this may change in a future version.

The whole configuration is saved in a single JSON document, but the specific format is not defined by a single schema; instead, each package can provide a schema, and the configuration tree is validated against a merged schema definition.

The schemas also provide default values for the configuration. Adding documentation for the configuration options to the schemas is planned as a future addition and might be used to support the user in configuration utilities and automatically generate web-based or other interfaces.

This gives only a small example for the usage of ECE, the abovementioned ECE Wiki contains much more information about the usage of ECE and the ideas behind it.

In addition to the daemon and a simple CLI utility, I've developed libraries for C, Lua and Shell which allow to access the configuration. While there are still some features missing (some points for future work are given in https://gitlab.com/neoraider/ece/wikis/todo ), I think most of the missing pieces can be added in the near future.

The UCI/ECE bridge

When I proposed my project for the GSoC, I didn't aim at making it a full replacement for the current UCI system, at least not in the near future. While the possibility to move some of UCI config files into the ECE config database had been my plan from the beginning, my ideas for backwards compatibility didn't go further than a one-time import from UCI to ECE, and one-way generation of UCI config files from ECE.

After talking to a few LEDE developers and package maintainers, it became clear to me and my mentors that many people are interested in replacing UCI with a better system in the not-too-far future. But for ECE to become this replacement, a real two-way binding between UCI and ECE would be necessary to allow gradual migration, so configuration utilities like LuCI (and many other utilities somehow interacting with UCI) don't need to be adjusted in a flag-day change.

An incomplete design draft for this UCI/ECE bridge has been outlined in https://gitlab.com/neoraider/ece/wikis/design/uci-bridge . The code found in the UCI ECE backend repository linked above implements a part of this bridge (it can load "static" and "named" bindings from ECE into UCI, and commit "static" bindings back to ECE) and has been implemented as an API- and ABI-compatible extension to libuci. The development of this bridge has taken a lot of time (much more time than I had originally scheduled for UCI compatibility features), as the data models of UCI and ECE are very different.

Future work

Of all points given in https://gitlab.com/neoraider/ece/wikis/todo , finalizing the database format is the most important, as any future change in the storage format will either break compatibility or involve some kind of conversion. When it is clear the format won't be changed anymore, ECE should be added to the OpenWrt community package repository to make it easily accessible to all OpenWrt and LEDE users.

After that, other points given in the TODO should be dealt with, but none of those seem too pressing to prevent actually using ECE for some software (but some of the points given in the first section of the TODO page would need to be addressed to properly support software that requires more complex configuration).

Last, but no least, I'd like to express my gratitude to my mentors and all people in the OpenWrt, LEDE and Freifunk communities who have helped me develop ECE by giving guidance and lots of useful feedback, and to Google, who allowed me to focus on this project throughout this summer.